

Upwind Downwind Conference

Hamilton Airshed Modelling System

Janya Kelly Ph.D. and Anthony Ciccone Ph.D., P. Eng.

February 22, 2016

Acknowledgements

Thank you for the support and involvement of:

- Hamilton Industrial Environmental Association
- City of Hamilton
- Environment Hamilton
- Ministry of the Environmental and Climate Change

Why Airshed Modelling?

Why are we doing this?

- Need to understand what is impacting air quality and where it is coming from
- Help with policy decisions
- Concerns over what should be prioritized

Is anyone else doing this?

- Regional air quality modelling performed by government agencies and research institutions
- Municipalities are starting to take control of their air quality
 - Halton
 - Peel Region
 - City of Toronto

BAQS-MET Study (2007)

- Border Air Quality and Meteorology Study (BAQS-Met) in Southwestern Ontario in 2007
- Focus on the Windsor-Sarnia region
- Purpose
 - Understand how lake-driven meteorology impacts air quality in the region
 - Improve models used for forecasting and policy scenarios
- Regional air quality transported into the region is typically poor
- Local emissions can be enhanced by the presence of the Great Lakes
 - Pollutants trapped within smaller volume than would normally occur
 - Localized peaks in O₃ and PM_{2.5}
- Even if poor air quality is transported into the region, local controls are still important

What's impacting the health and well-being of Hamilton residents and where is it coming from?

Project Objectives

Challenge:

- Unraveling the Hamilton Airshed
 - nature and level of contribution of various local and regional background sources to air quality;
 - geographical distribution of ambient air concentrations
 - hourly, daily and seasonal changes to consider

Solution:

- Develop, implement and execute an Airshed Modelling System for the City of Hamilton
 - Process emissions from sources into ambient air concentrations
 - Include local, regional and transboundary influences
- Verify modelling results with observations from local ambient monitoring
- Assess short-term and long-term exposure levels

Unraveling the Hamilton Airshed

Need to consider both large and small scale influences on the airshed

Source: https://asiancan.wordpress.com/hamilton/mm-hamilton-entrance/

Project Approach: Capturing Hamilton

Source: https://asiancan.wordpress.com/hamilton/mm-hamilton-entrance/

Success requires the following:

- Understanding of the region of interest and its influences
- ✓ A Big Computer
- ✓ Knowing what you are doing!

- Capture influences on a global, regional and local scale
 - Meteorology
 - Air Quality
- Capture the unique geography
- Capture variation of regional and local emission sources with time
 - Industrial
 - Commercial
 - Residential
 - Transportation (rail, airways, marine and roads)
 - Agricultural/biogenics

Which Air Quality Model?

CALPUFF: Lagrangian Dispersion Model

 Air parcel advected through atmosphere undergoes chemical transformation

Source: Seinfeld and Pandis (1998). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change

CMAQ: Eulerian Chemical Transport Model

 Array of fixed air parcels undergo chemical transformation

Source: http://www.romair.eu/aria/data/principle.jpg

Air Quality Modelling System

Grid Density: Tier IV

Boundary Conditions / Initial Conditions

GEOS-Chem focuses on chemical species with longer lifetimes that can be transported around the globe

Influence locally will be driven by local sources, not boundary or initial conditions

Image source: http://acmg.seas.harvard.edu/geos/doc/man/

Meteorological Modelling

- Weather Research and Forecasting-Advanced Research WRF (WRF-ARW) Model v.3.6.1
- Nested 36-12-4-1.33 km domains
- Modelling 2012 to produce hourly predictions for each day of the year
- North American Regional Reanalysis initialization data set
- Grid and observational nudging
 - NCEP ADP Global Upper Air Observational Weather Data
 - NCEP ADP Global Surface Observational Weather Data
- Model performance evaluation (MPE) will be conducted to determine adequacy of model predictions

Example Meteorological Modelling

Example Meteorological Modelling

Meteorology: Tier IV Temperature

Meteorology: Tier IV Temperature

Meteorology: Tier IV Wind Convergence

Emissions: Compounds of Concern

- Which ambient air concentrations have the greatest impact on the health and well-being of Hamilton residents?
 - Look at current emission sources in the area
 - Consult with HIEA, Hamilton Health and Stakeholders

Selected Compounds of Concern		
Nitrogen Oxides (NO ₂ and NO)	Chromium (VI)	Ammonia
Sulphur Dioxide	Lead	Benzene
Ozone	Manganese	Formaldehyde
Particulate Matter (TSP, PM ₁₀ , PM _{2.5})	Mercury (gaseous)	Benzo[a]pyrene
Cadmium	Mercury (non-gaseous)	VOCs (Anthropogenic/Biogenic)
Chromium (III)	Nickel	

Data sets for Emissions

- Environment Canada
 - NPRI Annual Emissions by Industrial Facility including stack parameters for large point sources
 - NPI Annual emissions by province for non-road mobiles (e.g. airports, rail, marine)
- Great Lakes Commission (GLC)
 - Centralized Air repository On-Line (CAROL) Emission Inventory data by county
- Municipality Property Assessment Corporation (MPAC)-
 - Property codes and land use classifications
- Transport Canada and GO Trains
 - Transportation schedules
- StatsCan
 - Provincial statistics on population and energy use
- Union Gas
 - Natural gas purchasing data by postal code
- USEPA
 - Webfire Database temporal profiles and emission factors by SCC codes

Golder

Tier I US Industrial Paraffin (PAR) Emissions

Air Quality Modelling

- Model compounds of concern (e.g., PM_{2.5}, O₃, SO₂, NO₂, CO, VOCs, NH₃)
- Two-way nested modelling
- Sensitivity modelling
 - Source group sensitivities (commercial, residential, industrial, biogenicagricultural, non-road, on-road)
 - With and without local emissions
- Post–processing:
 - Model performance evaluation using MOE and local ambient air monitoring
 - Analyze 24-hr & annual data
 - Focus on trends as well as absolute values
 - Provide breakdown on contribution of various source groups to concentrations

Example Results – Ozone

Questions? Janya_Kelly@golder.com Anthony_Ciccone@golder.com

